Multiscale Computer Modeling to Advance Protein Biotechnology

The transition states for membrane permeation and supramolecular catalysis, which control the rates of these processes, cannot be observed experimentally. Therefore, to make sense of our experimental results and design improved systems for membrane permeation and supramolecular catalysis, we employ computational modeling. This interdisciplinary approach enables students and postdoctoral fellows in the Schneebeli lab to gain valuable experience in both experimental and computational research related to peptide/protein drug delivery and formulation and supramolecular catalysis.

Representative Publications

Concerted Rolling and Penetration of Peptides during Membrane Binding

J. M. Remington, J. B. Ferrell, S. T. Schneebeli, J. Li., J. Chem. Theory Comput., 2022, 18, 3921–3929


Aggregation State of Synergistic Antimicrobial Peptides

J. M. Remington, C. Liao, M. Sharafi, E. J. Ste.Marie, J. B. Ferrell, R. J. Hondal, M. J. Wargo, S. T. Schneebeli, J. Li, J. Phys. Chem. Lett. 2020, 11, 9501–9506


A Top-Down Multiscale Approach to Simulate Peptide Self-Assembly from Monomers

X. Zhao, C. Liao, Y. Ma, J. B. Ferrell, S. T. Schneebeli, J. Li, J. Chem. Theory Comput. 2019, 15, 1514–1522


Melittin Aggregation in Aqueous Solutions: Insight from Molecular Dynamics Simulations

C. Liao, M. E. Selvan, J. Zhao, J. L. Slimovitch, S. T. Schneebeli, M. Shelley, J. C. Shelley, and J. Li, J. Phys. Chem. B 2015, 119, 10390–10398.


Nano-Bio Interactions between DNA Nanocages and Human Serum Albumin

D. R. McCarthy, J. M. Remington, J. B. Ferrel, S. T. Schneebeli, J. Li J. Chem. Theory Comput. 2023, 19, 7873–7881. Cover Art.


Precise Through-space Control of an Abiotic Electrophilic Aromatic Substitution Reaction

K. E. Murphy, J. L. Bocanegra, X. Liu, H.-Y. K. Chau, P. C. Lee, J. Li, S. T. Schneebeli, Nature Commun. 2017, 8, 14840.

Previous
Previous

Precision Catalysis